Существуют три основных метода определения пространственных координат объектов:

линий и поверхностей положения;

корреляционно-экстремальный;

счисления пути.

Но последние два в настоящее время применимы только для автономных навигационных систем, т.е. при определении местоположения на самом ЛА. Определение координат целей в настоящее время основывается на применении метода линий и поверхностей положения.

Общность физических основ радиодальнометрии и радиопеленгации находит выражение еще в том, что местоположение цели можно установить не только по ее дальности и углам, измеренным из одной точки О (рис. 1.3), но и путем измерения дальности или углов из разнесенных опорных точек и,(рис. 1.7). Наибольшее применение получили дальномерный, разностно-

дальномерный, угломерный (пеленгационный) и дальномерно-угломерный

(комбинированный) методы определения местоположения целей.


Рис. 1.7. Методы определения местоположения объектов:

а – дальномерный; б – разностно-дальномерный; в – пеленгационный (уг-

ломерный)

В радиолокации для определения местоположения цели (объекта) чаще всего применяют позиционный метод, основанный на использовании поверхностей или линий положения для определения места объекта в пространстве или на поверхности Земли. Поверхность положения представляет собой геометрическое место точек в пространстве, отвечающих условию постоянства параметра (измеряемой координаты относительно опорного пункта (дальности, угла и т.п.)).

Местоположение ЛА в пространстве находится как точка пересечения трех поверхностей положения (ПП). Пересечение двух поверхностей положения дает линию положения (ЛП), которая является геометрическим местом точек с постоянными значениями двух параметров. Чтобыопределить точку в пространстве, требуется пересечение трех поверхностей положения или линии и поверхности положения. В случае нахождения цели иопорных пунктов в одной плоскости достаточно двух ЛП (определения двухкоординат цели, которые измеряются двумя РЛУ) (рис. 1.7).

Дальномерный метод заключается в определении местоположения цели М

(рис. 1.7, а) измерением расстояний между целью и опорными пунктами ,.

Каждая поверхность положения представляет собой сферу с центром в опор-

ном пункте и радиусом, равным дальности. Так как точки М , ,находятся в одной плоскости, то поверхности положения переходят в окружности радиусамиис точкой пересечения на целиМ . Имеется еще одна точка пересечения окружностей, но неоднозначность измерений можно исключить.

Разностно-дальномерный метод (рис. 1.7, б) требует наличия на плоскости двух пар опорных пунктов ,и,. Один из них обычно общий

(). Каждая пара станций используется для получения ЛП в виде гипербол сфокусами в опорных пунктах. Эти линии строятся как геометрические места

точек с постоянной разностью расстояний: оти;оти. Точка пересечения гипербол совпадает с целью М.

Угломерный (пеленгационный) метод основан на использовании направленных свойств антенн. Этот метод реализуется посредством радиопеленгатора,установленного на объекте М, и двух радиомаяков, расположенных в опорныхпунктах и(рис. 1.7, в) с базой b.

Радиопеленгатор представляет собой радиоприемное устройство с направленной антенной, а радиомаяк - передающее устройство с ненаправленной антенной. Пеленгатор измеряет азимуты маякаимаяка, и так как ЛПс постоянными пеленгами (= const,= const) представляют собой прямые, проходящие под углами,к направлению юг - север, то они имеют одну точку пересечения, которая является искомой, т. е. совпадает с целью М.

Дальномерно-угломерный метод (рис. 1.2, 1.3, 1.8) требует применения только одной станции, содержащей радиодальномер и радиопеленгатор. Из точки стояния станции О дальномер определяет наклонную дальность цели, а пеленгатор устанавливает направление на цель, т. е. ее азимут α и угол места β.

Цель М находится на пересечении поверхности положения дальномера в виде шара радиуса и ЛП пеленгатора - в виде прямой с угловыми координатами α и β, проходящей через точку О. Этот метод наиболее характерен для радиолокации, а остальные методы - для радионавигации. Однако и в радиолокации местоположение цели определяют иногдаиз двух и более точек. Например, если обычная PЛС производит пеленгацию сбольшими ошибками, то прибегают к дальномерному методу, а если дальномерную часть РЛС нельзя использовать из-за сильных помех или вследствиеприменения пассивной радиолокации, то прибегают к пеленгационному методу.

Рис. 1.8. ПП при определении местоположения объекта позиционным (даль-

номерно-пеленгационным) методом

Таким образом, в радиолокации для определения местоположения объекта применяют позиционные методы, основанные на использовании ПП или ЛП. Выбор метода определяет количество РЛУ, входящих в систему.

Заключение

1. В отраженных от целей радиолокационных сигналах заложена вся информация о них, так как при отражении изменяются все параметры сигнала (амплитуда, частота, начальная фаза, длительность, спектр, поляризация и т.д.).

2. В современной радиолокации используются местные и глобальныеСК. Местные СК подразделяются на цилиндрические и сферические СК, глобальные СК – на географические и геосферические.

3. По принципам образования радиолокационных сигналов методы радиолокации разделяются на активные, полуактивные и пассивные. На практике часто их совмещают при проектировании радиолокационных систем.

4. В радиолокации для определения местоположения объекта применяют позиционные методы, основанные на использовании ПП или ЛП.

Выбор метода определяет количество РЛУ, входящих в систему.

Контрольные вопросы :

1. Принцип измерения дальности в радиолокации.

2. Принцип пеленгации в радиолокации.

3. Принцип измерения скорости в радиолокации.

4. Основные элементы сферической СК, используемой в радиолокации.

5. Основные элементы цилиндрической СК, используемой в радиолокации.

6. Основные элементы географической СК.

7. Основные элементы геоцентрической СК.

8. Сущность активных методов формирования радиолокационного сигнала.

9. Сущность полуактивного и пассивного методов формирования радиолокационного сигнала.

10. Сущность дальномерного и разностно-дальномерного методов определения местоположения объекта.

11. Сущность угломерного и дальномерно-угломерного методов определения местоположения объекта.

Задание на самостоятельную подготовку:

1. Изучить материалы лекции.

2. Подготовиться к контрольной работе по контрольным вопросам.

Литература:

1. Бакулев П.А. Радиолокационные системы: Учебник для вузов. –

М.: Радиотехника, 2004.

2. Белоцерковский Г.Б. Основы радиолокации и радиолокационные

устройства. – М.: Советское радио, 1975.

Сравнительная оценка разностно-дальномерного и угломерного(пеленгационного) методов определения координат ИРИ

На практике для определения координат источников радиоизлучений (ИРИ) применяют угломерный (пеленгационный), дальномерный, суммарно-дальномерный, разностно-дальномерный методы, а также их комбинации .

Из описания указанных методов можно выделить их характерные особенности.

Так, для реализации дальномерного и суммарно-дальномерного метода на приемных пунктах должна быть известна структура сигнала. В связи с этим среди перечисленных выше типов РЭС такие методы могут быть применены лишь для местоопределения абонентских терминалов (АТ) сотовой связи, поскольку их функционирование принципиально возможно только под управлением базовой станции, которая в процессе радиообмена всегда измеряет дальность до АТ.

Для угломерного (УМ) и разностно-дальномерного методов (РДМ) не требуются информация о точной структуре сигнала, а достаточно указать лишь область спектра, в которой сосредоточена основная энергия сигнала. Причем, все больше производителей техники определения координат ИРИ обращают внимание на РДМ, в связи с появлением недорогих компактных вычислительных ресурсов и усовершенствованных технологий радиоприема, доступностью каналов передачи данных, а также наличием точных распределяемых сигналов хронирования.

В таблице приводятся результаты анализа достоинств и недостатков традиционных вариантов построения РДМ (с жесткой синхронизацией периферийных приемных пунктов) в сравнении с УМ, заимствованные из отчета Международного союза электросвязи МСЭ-R SM.2211.

Таблица

Более простые требования к антенне

Антенна является дешевой, несложной и может иметь небольшой размер.

Приемники РДМ могут использовать одну простую антенну (например, несимметричный или симметричный вибратор). Дополнительным преимуществом является то, что можно изготовить малозаметную антенну небольшого размера.

Более простые требования к выбору места и калибровке

Для РДМ требования к выбору места являются менее жесткими, чем для УМ, и калибровка практически не требуется.

В результате развертывание оборудования РДМ осуществляется быстрее. Можно установить дополнительные приемники РДМ, для того чтобы преодолеть влияние затенения от высоких препятствий.

В системе УМ места должны выбираться таким образом, чтобы свести к минимуму искажение фронта волны, обусловленное вторичными излученными локальных препятствий, отражениями от земли и изменением проводимости почвы. Некоторые антенные решетки системы УМ должны быть калиброваны после установки на месте, для того чтобы свести к минимуму результирующие ошибки, зависящие от частоты и направления.

Широкополосные сигналы, сигналы с низким ОСШ, а также сигналы малой длительности

Метод РДМ эффективно работает с новыми и появляющимися сигналами, характеризующимися сложными методами модуляции, широкой полосой и малой длительностью. С увеличением ширины полосы сигнала степень эффективности РДМ, как правило, возрастает.

Метод УМ, эффективно работает с узкополосными сигналами. Усовершенствованные методы УМ могут применяться для определения местоположения любых сигналов, в том числе широкополосных, сложных и коротких.

Степень эффективности УМ, в приближении, не зависит от ширины полосы сигнала, при условии, что разнос каналов, подвергающихся быстрому преобразованию Фурье (БПФ), равен ширине полосы сигнала.

Оба метода, РДМ и УМ, эффективнее работают с сигналами, имеющими более высокие ОСШ, и при большем времени интегрирования. Выигрыш за счет корреляционной обработки позволяет с помощью методов РДМ обнаруживать и определять местоположение сигналов с низким (и даже отрицательным) ОСШ. Кроме того, он позволяет задействовать при определении географического местоположения дополнительные приемники РДМ.

Сигналы с низким ОСШ могут обрабатываться с помощью усовершенствованных методов УМ, например корреляционных методов УМ с повышенной разрешающей способностью или со вспомогательными данными (опорная радиопеленгация).

Определение географического местоположения источников сигналов малой длительности требует координированной работы приемников, синхронизированных по времени до доли величины, обратно пропорциональной ширине полосы сигнала. Обеспечение такой возможности является непременным условием работы систем РДМ. Кроме того, методом РДМ можно определить географическое местоположение на основе измерений очень малой длительности, проводимых в отношении сигналов большей длительности.

Если элементы антенны УМ коммутированы, то необходимое время интегрирования будет меньше.

Сложность системы

Приемник и антенна системы РДМ являются более простыми, чем типовая антенная решетка и двух- или многоканальный приемник системы УМ.

Приемнику системы РДМ требуется как минимум один РЧ канал в реальном времени для обработки без задержки и с максимальной вероятностью перехвата сигнала (1) .

Подавление некоррелированных шумов и помех

С помощью корреляционной обработки, используемой в РДМ, можно подавлять сигналы на совпадающей частоте, совпадающий по времени шум и сигналы помех, которые некоррелированы между местами проведения измерений. Это свойство позволяет системе определять географическое местоположение источников сигналов с низкими отношениями сигнала к помехе и шуму (низкое отношение SINR).

Усовершенствованные системы УМ могут ослаблять влияние некоррелированных и совпадающих по времени помех на совпадающей частоте путем использования корреляции с опорными сигналами. Другие усовершенствованные методы обработки, например MUSIC могут быть устойчивыми к некоррелированным шумам и помехам. Однако такие методы требуют дорогостоящих вычислений и не получили широкого применения при осуществлении контроля за использованием спектра.

Ослабление влияния когерентных помех на совпадающей частоте (многолучевости) при определенных условиях

Степень эффективности УМ и РДМ, снижается в условиях многлучевости - когерентных помех на совпадающей частоте. Воздействие на каждый метод различается в зависимости от положения датчика по отношению к многолучевым отражениям.

При достаточной ширине полосы сигнала метод РДМ менее чувствителен к искажению фронта волны за счет локальных препятствий (локальной многолучевости). Может потребоваться усовершенствованная обработка сигнала для устранения неопределенностей при определении местоположения, вызванных удаленными препятствиями (дистанционная многолучевость). С помощью усовершенствованной обработки можно дополнительно отфильтровать корреляционные пары, используемые при определении местоположения методом РДМ, и улучшить результаты, получаемые в условиях повышенной многолучевости.

При усовершенствованной обработке методом РДМ можно исключить временные задержки при многолучевом распространении между местами проведения измерений, что обеспечивает высокую эффективность в условиях со сложным рельефом местности.

Соображения относительно конфигурации

РДМ и УМ, обеспечивают наибольшую точность, при ИРИ расположеном в центре периметра, образованного местами проведения измерений.

Точность определения географического местоположения методом РДМ определяется геометрическим показателем снижения точности, качеством временной синхронизации и качеством оценки РДМ.

Точность методов УМ напрямую зависит от расстояния между источником и каждым приемником УМ. Неопределенность положения является функцией от неопределенности угла пеленга и расстояния от приемника до оцениваемого положения.

Неопределенность местоположения и пеленга увеличивается с расстоянием одинаково в обоих методах.

Высокая степень пригодности к использованию в сетях РЧ датчиков

В обоих методах, РДМ и УМ, увеличение числа приемников ведет к улучшению результатов.

Метод РДМ хорошо подходит для развертывания многих приемников.

Возможность анализа в полностью автономном режиме на центральном сервере

В системах РДМ могут храниться и регистрироваться скоординированные во времени измерения сигналов от всех приемников, поэтому на центральном сервере можно осуществлять анализ в полностью автономном режиме. Сюда входит спектральный анализ сигнала каждого приемника, кросскорреляционные измерения и определение географического местоположения.

В системах УМ на центральном сервере также могут храниться и регистрироваться некоторые измерения сигналов (например, результаты пеленгации и точность пеленгации). Эти измерения скоординированы во времени до той степени временной синхронизации, которая достижима в системе УМ. Такие измерения, как результаты спектрального анализа и перекрестной корреляции, не являются типовыми, поскольку для них требуется такая же скорость передачи данных по соединительным линиям, как и в РДМ.


(1) В типовых корреляционных системах интерферометрии используется временное разделение для уменьшения числа необходимых приемников. Этим системам требуется два-три приемника, подключенных к пяти, семи или более антеннам. Эти системы являются менее сложными, чем полностью параллельные системы радиопеленгации, однако для определения местоположения им необходима бóльшая минимальная длительность сигнала.

Представленный в таблице качественный анализ достоинств и недостатков УМ и РДМ на первый взгляд свидетельствует о предпочтительности применения для реализации процедуры радиомониторинга РДМ. Вместе с тем, однозначно нельзя утверждать, что данный метод будет предпочтительнее во всех случаях. Поэтому далее проведем более детальное сравнение указанных методов на количественной основе. Для этого воспользуемся показателем в виде эллипса рассеяния ошибок , который характеризует разброс ошибок местоопределения конкретными численными показателями – размерами его малой и большой полуосей, а также их наклоном.

Для построения эллипса рассеяния с центром в точке сначала рассчитываются элементы матрицы точности местоопределения . Обратной к матрице точности является соответствующая границе Рао-Крамера корреляционная матрица ошибок вычисления координат , где - дисперсия по оси , - корреляционный момент, - дисперсия по оси .

Элементы матрицы точности для УМ вычисляются по формулам :


(1)

где , - координаты пеленгаторов, - общее количество позиций пеленгаторов, - евклидово расстояние между точками и на плоскости, - среднеквадратичная ошибка (СКО) оценивания пеленга, радиан.

Для РДМ местоопределения элементы матрицы точности вычисляются через матричное произведение .

По совокупности измеряемых геометрических параметров системы определения местоположения источников ЭМИ подразделяются :

· на триангуляционные (угломерные, пеленгационные);

· разностно-дальномерные;

· угломерно-разностно-дальномерные.

Вид и количество измеряемых геометрических величин определяют пространственную структуру системы определения местоположения источника ЭМИ: количество пространственно разнесенных приемных пунктов сигналов источника ЭМИ и геометрию их расположения.

Триангуляционный (угломерный, пеленгационный) метод основан на определении направлений (пеленгов) на источник ЭМИ в двух точках пространства с помощью радиопеленгаторов, разнесенных на базу d (рис. 18,а).

Рис. 18. Пояснение триангуляционного метода определения местоположения источника ЭМИ на плоскости (а) и в пространстве (б)

Если источник ЭМИ располагается в горизонтальной или вертикальной плоскости, то для определения его местоположения достаточно измерить два угла азимута ц1 и ц2 (или два угла места). Местоположение источника ЭМИ определяется точкой пересечения прямых О1И и О2И - двух линий положения.

Для определения местоположения источника в пространстве измеряют углы азимута ц а1 и ц а2 в двух разнесенных точках О1 и О2 и угол места цм1 в одной из этих точек или, наоборот, углы места цм1 и цм2 в двух точках приема и угол азимута ц а1 в одной из них (рис. 18,б).

Расчетным путем может быть определена дальность от одной из приемных точек до источника по измеренным углам и известной величине базы d:

отсюда приравняем два выражения для h:

Таким образом, дальность до источника

Триангуляционный метод прост в технической реализации. Поэтому широко применяется в системах радио- и РТР, в пассивных радиолокационных разнесенных системах при обнаружении и определении координат излучающих объектов.

Существенным недостатком триангуляционного метода является то, что при увеличении количества источников ЭМИ, находящихся в зоне действия радиопеленгаторов, могут происходить ложные обнаружения несуществующих источников (рис. 19). Как видно из рис.19, наряду с определением координат трех истинных источников И1, И2 и И3 обнаруживаются и шесть ложных источников ЛИ1, …, ЛИ6. Исключить ложные обнаружения при применении триангуляционного метода можно путем получения избыточной информации о пеленгуемых источниках - увеличением количества разнесенных радиопеленгаторов или опознаванием принадлежности получаемой информации к определенному источнику. Опознавание может быть проведено при сравнении сигналов, принимаемых радиопеленгаторами, по несущей частоте, периоду следования и длительности импульсов

Рис. 19.

Дополнительную информацию об источниках получают и за счет взаимно корреляционной обработки сигналов, принимаемых в разнесенных точках пространства.

Устранение ложных обнаружений при применении триангуляционного метода возможно также за счет получения данных о разности дальностей от источника излучения до пунктов приема (пунктов расположения радиопеленгаторов). Если точка пересечения линий пеленгов не лежит на гиперболе, соответствующей разности дальностей, то она является ложной.

Разностно-дальномерный метод определения местоположения основан на измерении с помощью РЭС разности дальностей от источника ЭМИ до пунктов приема, разнесенных в пространстве на расстояние d. Местоположение источника на плоскости находится как точка пересечения двух гипербол (две разности дальностей, измеренные в трех приемных пунктах), принадлежащих различным базам А1А2, A2A3 (рис. 20). Фокусы гипербол совпадают с точками расположения пунктов приема.

Рис. 20.

Пространственное положение источников ЭМИ определяется по трем разностям дальностей, измеряемым в трех-четырех приемных пунктах. Местоположение источника - точка пересечения трех гиперболоидов вращения.

Угломерно-разностно-дальномерный метод определения местоположения предполагает измерение с помощью РЭС разности дальностей от источника ЭМИ до двух разнесенных приемных пунктов и измерение направления на источник в одном из этих пунктов.

Для определения координат источника на плоскости достаточно измерить азимут ц и разность дальностей АД от источника до точек приема. Местоположение источника определяется точкой пересечения гиперболы и прямой.

Для определения положения источника в пространстве необходимо дополнительно измерить в одной из точек приема угол места источника ЭМИ. Местоположение источника находится как точка пересечения двух плоскостей и поверхности гиперболоида.

Ошибки определения местоположения источника ЭМИ на плоскости зависят от ошибок измерения двух геометрических величин:

· двух пеленгов в триангуляционных системах;

· двух разностей дальностей в разностно-дальномерных системах;

· одного пеленга и одной разности дальностей в угломерно-разностно-дальномерных системах.

При центрированном гауссовском законе распределения ошибок определения линий положения среднеквадратическое значение ошибки определения местоположения источника:

где - дисперсии ошибок определения линий положения; r - коэффициент взаимной корреляции случайных ошибок определения линий положения Л1 и Л2; г - угол пересечения линий положения.

При независимых ошибках определения линий положения r = 0.

При триангуляционном методе определения местоположения источника

Среднеквадратическая ошибка определения местоположения

При применении идентичных радиопеленгаторов

Наибольшая точность будет при пересечении линий положения под прямым углом (г = 90°).

При оценке ошибок определения местоположения источника в пространстве необходимо рассматривать ошибки измерения трех геометрических величин. Ошибка определения местоположения зависит в этом случае от взаимной пространственной ориентации поверхностей положения. Наивысшая точность определения положения будет при пересечении нормалей к поверхностям положения под прямыми углами.

Радиотехнические методы внешнетраекторных измерений

Аппаратура внешнетраекторных измерений, основанная на радиотехническом принципе, по сравнению с оптической обладает большей дальностью слежения и более универсальна. Она позволяет определять не только угловые координаты ЛА, но и дальность до объекта, его скорость, направляющие косинусы линии дальности и т.д.

Измерение дальности в радиотехнических системах сводится к определению времени задержки t D прихода излучаемых или отраженных радиосигналов, которые пропорциональны дальности

D=ct D ,

где с =3×10 8 м/с - скорость распространения радиоволн.

В зависимости от вида используемого сигнала определение t D может производиться измерением фазового, частотного или непосредственно временного сдвига, относительно опорного сигнала. Наибольшее практическое применение нашли импульсный (временной) и фазовой методы. В каждом из них измерение дальности может осуществляться как беззапросным , так и запросным способом. В первом случае дальность D=ct D , во втором - D=0,5ct D .

При беззапросном импульсном методе на борту ЛА и на Земле устанавливаются высокоточные хронизаторы х 1 и х 2 , синхронизируемые перед запуском (Рис. 9.5). В соответствии с импульсами u 1 хронизатора х 1 бортовой передатчик П излучает импульсные сигналы с периодом Т . Наземное приемное устройство П р принимает их через t D =D/c . Интервал t D между импульсами наземного хронизатора u 2 и импульсами u 1 на выходе приемника соответствует измеряемой дальности.

При запросном импульсном методе сигнал посылается наземным передатчиком, принимается бортовым приемником и ретранслируется обратно.

Рис. 9.5. Принцип измерения дальности импульсным беззапросным методом.

Точность этих методов повышается с увеличением частоты импульсов.

Фазовый метод измерения дальности заключается в том, что запаздывание сигнала определяется по фазовому сдвигу между запросным и ответным сигналом (Рис. 9.6).

Рис. 9.6. Фазовый метод измерения дальности

Наземный передатчик излучает колебания:

u 1 =A 1 sin(w 0 t+j 0)=A 1 sinj 1 ,

где А 1 - амплитуда,

w 0 - круговая частота,

j 0 - начальная фаза,

j 1 - фаза колебаний сигнала.

Бортовая аппаратура ретранслирует сигнал u 1 , а наземный приемник принимает сигнал

u 2 =A 2 sin=A 2 sinj 2 ,

где j А - фазовый сдвиг, обусловленный прохождением сигнала в аппаратуре, определяемый расчетным или экспериментальным путем.

Изменение фазы колебаний сигнала u 2 относительно u 1 определяется отношением:

j D =j 2 -j 1 =w 0 t D =LpD/(T 0 c),

откуда дальность

где l 0 - длина волны.

При измерении угловых параметров движения ЛА радиотехническими средствами наибольшее распространение получили амплитудные и фазовые методы.



Амплитудный метод основан на сравнении амплитуд сигналов при различных положениях передающей или принимающей антенны. При этом возможны два варианта выполнения угломерных систем: амплитудные пеленгаторы и маяки. В первом случае передающее устройство П располагается на ЛА, а диаграмма направленности наземного приемного устройства П р периодически занимает положение I или II (Рис. 9.7).

Рис. 9.7. Амплитудный метод измерения угловых параметров

Если угол a =0, то уровень сигнала при обоих положениях диаграммы направленности будет одинаковым. Если a ¹0, то амплитуды сигналов будут различны, и по их разности можно вычислить угловое положение ЛА.

В том случае, когда информацией об угловом положении надо располагать на борту ЛА, применяют амплитудный маяк . Для этого на земле устанавливается передатчик, а диаграмма направленности наземной антенны сканирует, периодически занимая положения I и II. Сравнивая амплитуды сигналов, принимаемых бортовым приемником, определяется угловое положение ЛА.

Фазовый метод основан на измерении разности расстояний от ЛА до двух базисных точек О 1 и О 2 (Рис. 9.8).

Рис. 9.8. Фазовый метод определения угловых параметров

При этом расстояния до объекта R 1 и R 2 определяются по разности фаз Dj гармонических колебаний, излучаемых источником, расположенном в пунктах О 1 и О 2 . Косинус направляющего угла q определяется:

где В - расстояние между пунктами О 1 и О 2 .

Примером комплекса внешнетраекторных измерений, применяемом в полигонной практике, может служить система «Трасса» (Рис. 9.10). Данная аппаратура, разработанная и выпускаемая СКБ измерительной аппаратуры НТИИМ, использует координатно-угломеро-базовый принцип.

Она состоит из двух следящих телевизионных теодолитов 1, системы управления 2, системы синхронизации единого времени 3, системы регистрации и обработки информации 4. Система «Трасса» позволяет получать информацию о координатах, скорости, коэффициенте лобового сопротивления, а также наблюдать поведение объекта на экране монитора.

Рис. 9.10. Система внешнетраекторных измерений “Трасса”:

1-следящий телевизионный теодолит; 2-система управления; 3-система синхронизации единого времени; 4-системы регистрации и обработки информации

Основные характеристики системы «Трасса» приведены ниже:

Погрешность измерения угловых координат при угле места до 60 град:

В статике - 15 угл.сек

В динамике - 30 угл.сек,

Максимальные параметры сопровождения объекта

Угловая скорость - 50 град/сек,

Угловое ускорение - 50 град/сек 2 ,

Частота регистрации угловых координат изображений объекта – 25-50 кадров/сек.

Важнейшей задачей внешнебаллистических исследований является определение пространственного местоположения центра масс ЛА, которое однозначно определяется тремя пространственными координатами. При этом в навигации используются понятия поверхностей и линий положения.

Под поверхностью положения понимают геометрическое место точек местоположения ЛА в пространстве, характеризуемое постоянным значением измеряемого навигационного параметра (например, угла места, угла азимута, дальности и т.п.). Под линией положения , понимают пересечение двух поверхностей положения.

Положение точки в пространстве может быть определено пересечением двух линий положения, трех поверхностей положения и линии положения с поверхностью положения.

В соответствии с видом измеряемых параметров различают следующие пять методов определения местоположения ЛА: угломерный, дальномерный, суммарно и разностно-дальномерный и комбинированный.

Угломерный метод основан на одновременном измерении углов визирования ЛА из двух различных точек. Он может быть основан как на оптическом, так и на радиотехническом принципах.

При кинотеодолитном методе поверхностью наложения при a=const является вертикальная плоскость, а поверхностью положения при b=const - круговой конус с вершиной в точке О (Рис. 9.11, а).

Рис. 9.11. Определение координат объекта кинотеодолитным методом,

а) поверхность и линия положения, б) схема определения координат

Пересечение их определяет линию положения, совпадающую с образующей конуса. Следовательно для определения местоположения ЛА необходимо определить координаты точки пересечения двух линий положения OF 1 и OF 2 (Рис. 9.11, б), полученных одновременно с двух измерительных пунктов О 1 и О 2 .

В соответствии с рассматриваемой схемой координаты ЛА определяются по формулам:

где В - расстояние между измерительными пунктами,

R - радиус Земли в данной местности.

При использовании дальномерного метода координаты ЛА определяются точкой пересечения трех сферических поверхностей положения с радиусами, равными дальности D . Однако при этом возникает неопределенность, связанная с тем, что три сферы имеют две точки пересечения, для исключения которой используют дополнительные способы ориентирования.

Разностно и суммарно-дальномерный метод основан на определении разности или суммы дальностей от ЛА до двух измерительных пунктов. В первом случае поверхностью положения является двухполостной гиперболоид и для определения координат объекта необходимо иметь еще одну (ведущую) станцию. Во втором случае поверхность положения имеет вид эллипсоида.

Комбинированный метод обычно используется в радиолокационных системах, когда местоположение ЛА определяется как точка пересечения сферической поверхности положения с радиусом равным дальности (D=const ), конической поверхности положения (b=const ) и вертикальной поверхности положения (a=const ).

Доплеровский метод определения скорости и местоположения ЛА основан на эффекте изменения частоты несущего сигнала, излучаемого передатчиком и воспринимаемого приемным устройством в зависимости от скорости их относительного перемещения:

F д =¦ пр -¦ 0 ,

где F д - частота Доплера,

¦ пр - частота принимаемого сигнала,

¦ 0 - частота передаваемого сигнала.

Измерение частоты Доплера может быть проведено беззапросным или запросным методом. При беззапросном методе радиальная скорость ЛА при длине волны сигнала l 0 , определяется:

V r =F д l 0 ,

при запросном методе:

V r =F д l 0 /2.

Для определения дальности следует проинтегрировать результаты измерения скорости полета за время движения объекта от начальной точки. При расчете координат используются зависимости для суммарно-дальномерных систем.

Схемы определения параметров ЛА, основанные на эффекте Доплера, приведены на рисунке 9.12.

Рис. 9.12. Схема определения координат ЛА доплеровским методом:

а) без ретрансляции сигналов, б) с ретрансляцией сигналов

При проведении внешнетраекторных измерений движения ЛА малых размеров (пуль, артиллерийских и реактивных снарядов) используются доплеровские полигонные радиолокационные станции ДС 104, ДС 204, ДС 304 изготавливаемые НТИИМ.

Рис. 9.13. Доплеровские полигонные радиолокационные станции

ДС 104, ДС 204, ДС 304

Они используют запросный метод и позволяют определять скорости на любом участке траектории, текущие координаты в вертикальной плоскости, вычислять ускорения, числа Маха, коэффициент лобового сопротивления, средние и срединные отклонения начальной скорости в группе выстрелов.

Основные технические характеристики станции ДС 304 следующие:

Минимальный калибр - 5мм,

Диапазон скоростей - 50 – 2000 м/с,

Дальность действия - 50000 м,

Погрешность измерения скорости - 0,1%,

Частота зондирующего сигнала - 10,5 ГГц,

Уровень генерируемой мощности сигнала - 400 мВт.

Изобретение относится к области систем управления и может быть использовано для быстрой оценки и минимизации информации о географическом районе размещения мобильных малогабаритных радиоприемных комплексов. Достигаемый технический результат - снижение времени на определение районов размещения на местности для разнотипных технических средств радиоприемного комплекса. Способ оценки местности для размещения радиоприемных средств включает введение начальных условий и данных по заданному географическому району, загрузку цифровой карты местности (ЦКМ), первоначальную оценку местности по физико-географическим условиям, зафиксированным на ЦКМ, исключение зон, непригодных для размещения радиоприемных комплексов по возможностям, присущим размещаемым радиоприемным средствам при выполнении задач управления, оптимизацию ЦКМ по частным и обобщенному критериям. 1 ил.

Изобретение относится к области военной техники и может быть реализовано в виде программы для электронных вычислительных машин (ЭВМ) автоматизированной системы управления (АСУ) войсками для оценки местности и быстрой минимизации информации о географической районе размещения мобильных малогабаритных радиоприемных комплексов, в которой должны обеспечиваться наилучшие условия их функционирования и рационального расположения радиоприемных средств на местности.

Современные формы и способы вооруженной борьбы неразрывно связаны с применением информационных технологий, которые сегодня определяют как степень достоверности анализа местности и обстановки, так и скорость принятия качественных решений должностными лицами. Правильная оценка свойств местности и обстановки оказывает существенное влияние на эффективность решения вопросов в военной сфере, связанных с применением радиоприемных комплексов. Временные показатели боевых возможностей войск все больше и больше становятся зависимы от уровня применяемых информационных технологий и качества используемой в них информации . Эти зависимости лежат в основе заявляемого изобретения.

Сущность изобретения заключается в предварительном анализе, изучении и оценке района местности предназначенной для развертывания радиоприемных комплексов методом оптимизации, например методом динамического программирования с использованием аддитивного критерия качества (целевой функции) , при этом в качестве составляющих критерия вводят, например, математические, информационные либо геометрические примитивы характеризующие, например, непригодность зон для размещения радиоприемных комплексов и исключение этих зон из расчета.

На начальном этапе реализации способа оценки местности путем оптимизации минимизируют географическую зону возможного размещения радиоприемных комплексов, с учетом исключения составляющих административного и физического (и другого) характера, формируя возможные районы размещения на цифровой карте местности (ЦКМ). Минимизация приводит к снижению объема информации (без потери качества), что сокращает размер выборки, подлежащей обработке на ЭВМ и, как следствие, снижает требования к аппаратным ресурсам, что позволяет, например, использовать малогабаритные мобильные компьютерные средства.

На следующем этапе проводят структурирование и прогнозную оценку минимизированной рабочей зоны с целью возможного выбора определенного типа радиоприемного комплекса, которое может быть наиболее эффективно размещено и применено в данной географической зоне для выполнения специальных задач, для чего вводят оперативно-тактические условия функционирования и параметры, ограничивающие применение и размещение выбранных радиоприемных средств на данном районе. Далее для выбранного радиоприемного комплекса определяются дополнительные новые критерии целевой функции, которые, например, позволяют оценить электромагнитную доступность (ЭМД) источников радиоизлучений (ИРИ) выбранного радиоприемного комплекса для выполнения задач мониторинга в заданной на ЦКМ географической зоне.

Итогом прогноза будут являться информационно-структурированные прогнозные географические зоны на ЦКМ с учетом тактических свойств местности и возможностей радиоприемных комплексов по ЭМД ИРИ.

В качестве инструментария для реализации способа оценки местности выбирают, например, специализированный программно-аппаратный комплекс средств вычислительной техники и комплекс «Географические информационные системы» (ГИС) с ЦКМ (например, «Панорама», «Интеграция», «Карта 2011» и др.) .

Технический результат предлагаемого решения заключается в снижении общего объема выборки географической информации за счет фильтрации и оптимизации исходных данных, связанных с характеристикой района размещения радиоприемных средств до начала процесса их применения, что позволяет изучить районы функционирования технических средств и проложить маршруты выдвижения к ним, использовать мобильные аппаратные средства ЭВМ, а также предварительно оценить возможности радиоприемных средств по электромагнитной доступности контролируемых источников радиоизлучений в этих районах, которые в силу своих тактико-технических характеристик могут (или не могут, или могут со снижением тактико-технических показателей) функционировать в минимизированных прогнозных географических зонах (для решения задачи мониторинга).

Достигаемым техническим результатом изобретения является снижение времени расчета, затрачиваемое на определение районов размещения разнотипных технических средств должностными лицами, принимающими решения, путем снижения субъективных факторов и ошибок, за счет уменьшения объема анализируемых данных в условиях априорной неопределенности на основе использования информационных технологий, что позволяет экономить аппаратные ресурсы средств вычислительной техники и использовать малогабаритные, объектно-ориентированные, сетевые мобильные комплексы.

Известные способы оценки местности основаны на анализе априорной и апостериорной информации хранящейся в базах и банках данных о свойствах местности по ЦКМ и информации с использованием ГИС и других источников.

Например, при оценке местности в различных условиях используют данные, получаемые с топографических карт и аэрофотоснимков. [Николаев А.С. и др. Военная топография. / М.: Военное издательство Министерства обороны СССР, 1997; Говорухин A.M. и др. Справочник по военной топографии. - М.: Воениздат, 1980, стр. 111, 3, лист 12-2,4; Ю.Г. Маслак и др. Военная топография в служебно-боевой деятельности оперативных подразделений. - М.: Академический Проект, 2005 г.]. Данная технология, основанная на использовании бумажных карт, является классической и общепризнанной, имеющей большое значение, но недостатком известного способа является практическая неориентированность на использование современных геоинформационных технологий, в частности, глобальной навигационной спутниковой системы (ГЛОНАСС) и географической информационной системы. Данный способ для решения задачи быстрого выбора подходящей географической зоны для размещения радиоприемных комплексов неприменим, так как требует значительного объема топографической информации (оцифровка, сканирование, создание базы банков данных и т.д.) .

Известен способ оценки местности предложенный П.А. Иваньковым, Г.В. Захаровым. [Местность и ее влияние на боевые действия войск - Издательство: Министерства обороны СССР, 1969]. Данная методика не предусматривает использование современных информационных технологий, инструментария ГИС и ЦКМ и ориентирована на высокую степень субъективизма при принятии решения должностными лицами.

Известен способ прокладки маршрута для разнотипных транспортных комплексов с различной проходимостью участков с использованием геоинформационных технологий и ЦКМ (патент RU №2045773, МПК G06F 17/16 от 19.10.1995 г.), где в качестве основного критерия выбора оптимального маршрута является экономия горючесмазочных материалов. Преимуществом известного изобретения является его ориентация на современные геоинформационные технологии, однако указанным способом решают другие задачи и используют другие критерии оптимизации, поэтому полным прототипом предлагаемого авторами способа оно являться не может, но отдельные элементы известного изобретения, такие как применения ГИС и ЦКМ, заимствованы в предлагаемом изобретении.

Известен способ, в котором предложена оптимизация координат расположения станций, за счет чего обеспечивается максимально эффективное покрытие, т.е. минимальное количество зон с неустойчивым покрытием (патент RU №2460243, МПК H04W 16/18 от 17.02.2011 г.). В данном способе используют современные информационные технологии на основе ЦКМ по критерию минимально допустимого уровня сигнала. Недостатком известного способа является оценивание географического района непосредственно в процессе оптимизации зоны размещения, что приводит к необходимости обработки информации больших объемов.

Известен способ прокладывания оптимального движения мобильных объектов по пересеченной местности [Дорогое А.Ю., Лесных В.Ю., Раков В.И., Титов Г.С. Алгоритмы оптимального движения мобильных объектов по пересеченной местности и транспортной сети. - Санкт-петербургский государственный электротехнический университет, 2006 г.], включающий этапы определения исходного элемента для оптимизации загрузки электронной карты местности, определения точки старта и финиша, нахождение оптимальных маршрутов. Данный способ не позволяет произвести предварительную фильтрацию по определенным признакам данных до процесса оптимизации и, тем самым, сократить размер выборки, подлежащей обработке, на ЭВМ, что требует применения мощных ресурсоемких вычислительных систем и приводит к увеличению времени обработки информации.

Констатируется, что наиболее близким по своей сущности к заявляемому изобретению является способ прокладывания маршрута передвижения на пересеченной местности (патент RU №2439, МПК G01C 21/34 от 15.07.2010 г.), в котором предложена оценка географических свойств местности по географическому критерию и критерию проходимости без оценки эффективности. Однако в данном прототипе критериями при прокладке маршрута на местности являются экономия расхода горюче-смазочных материалов и возможность преодоления географических зон местности подвижным транспортным средством.

Целью настоящего изобретения является снижение времени на определение районов размещения на местности для разнотипных технических средств радиоприемного комплекса

Решение этой цели реализовано в виде методики, представленной блок-схемой алгоритма на фиг. 1.

На этапе 1 (фиг. 1) вводятся оперативно-тактические данные по заданному географическому району, которые включают исходные данные по площади (сектору, зоне) оцениваемого района, времени суток (ночь, утро, вечер или день для весенне-осеннего или летнего времени), характеристики времени года (зима, весна-осень, лето), возможности прямой видимости и другие, в зависимости от поставленных задач.

На этапе 2 определяется инструментальное средство (комплекс) для реализации способа оценки размещения на местности в условиях заданного географического района с учетом принятых критериев и ограничений с привлечением ГИС, ГЛОНАСС, ЦКМ и других современных технологий.

На этапе 3 производится загрузка цифровой карты местности для географической зоны определенной на этапе 1.

На этапе 4 задаются условия и определяют критерии для минимизации географического района определенного на этапе 1 с целью исключения из этого района зон непригодных для размещения радиоприемных комплексов, например, по административным, географическим или физическим (или другим) параметрам (признакам).

На этапе 5 для организации условного цикла при многократном расчете географических зон по различным частным критериям производится установка счетчика номера текущего частного критерия для расчета и оценки свойств географической зоны.

На этапе 6 определяется (или рассчитывается) очередной частный критерий, используемый в данном цикле расчета для оптимизации географической зоны.

На этапе 7 при необходимости и при возможности по результатам предыдущего расчета в цикле (если он был) уточняется географическая зона на ЦКМ. Далее после анализа этой зоны выбирается шаг сканирования географической зоны, т.е. сетка, в узлах которой будут рассчитываться информативные признаки местности по текущему критерию и накладываться на ЦКМ. Следует помнить, что большой шаг сканирования ускоряет решение задачи, но отрицательно влияет на точность результатов и наоборот.

На этапе 8 рассчитываются информативные признаки в узловых точках сканирования ЦКМ, и формируется информационный массив результатов сканирования географической зоны по текущему частному критерию.

Если на этапе 9 качество расчета и результаты удовлетворяют условиям постановки задачи, то на этапе 11 производится вывод и визуализация информационного массива с привязкой к ЦКМ. На основе этих данных осуществляется анализ результатов и принимается решение. Если результаты расчета не удовлетворительны, то на этапе 10 производится модификация алгоритма сканирования и выбирается другой шаг сканирования для повторного расчета.

На этапе 12 проверяется условие окончания цикла, организованного на этапе 5, для чего оценивается номер частного критерия, и, если он последний, то переходят к этапу 14, где производится расчет обобщенного географического критерия для оптимизированной географической зоны на ЦКМ для района определенного на этапе 1 и минимизированного на этапе 4, при этом определяются информативные признаки в узловых точках сканирования ЦКМ с учетом обобщенного критерия, который является аддитивным и определяется как сумма частных критериев. Если номер частного критерия не последний, то на этапе 13 производится модификация номера частного критерия и выбирается другой для следующего расчета.

На этапе 15 осуществляется вывод и визуализация информационного массива по обобщенному географическому критерию для анализа результатов и принятия необходимых решений.

Далее после минимизации и оптимизации географических зон на ЦКМ по географическим критериям определяют номенклатуру (перечень) радиоприемных комплексов, которые могут быть использованы в данной географической зоне для выполнения поставленных задач с последующей оценкой их эффективности.

Для этого на этапе 16 вводятся тактико-технические ограничения и начальные условия по возможному применению радиоприемных комплексов в заданной географической зоне для решения специальных задач. Они включают в себя факторы, которые зависят от условий применения средств, а также основные требования, предъявляемые к размещению.

На этапе 17 вводится номенклатура возможных типов и количество предполагаемых к применению радиоприемных комплексов с целью решения задачи их размещения в заданной минимизированной географической зоне.

На этапе 18 для организации условного цикла при многократном расчете эффективности применения всей номенклатуры определенных радиоприемных комплексов по соответствующим тактико-техническими данными (критериям), производится установка счетчика номера применяемого радиоприемного комплекса.

На этапе 19 определяется очередной радиоприемный комплекс, используемый в данном цикле расчета, и вводятся (или рассчитываются) его тактико-технические данные.

На этапе 20 оценивается возможность размещения и проверяется эффективность возможного применения текущего радиоприемного комплекса в заданной географической зоне.

На этапе 21 проверяется условие окончания цикла, организованного на этапе 18, для чего оценивается номер текущего радиоприемного комплекса из рассматриваемой номенклатуры, если он последний, то переходят к этапу 23, где производится формирование информации о целесообразности, возможности и эффективности специального применения, определенного на этапе 17 радиоприемного комплекса для минимизированного географического района. Если номер радиоприемного комплекса не последний, то на этапе 22 производится модификация номера радиоприемного комплекса для выполнения следующего расчета.

На этапе 24 осуществляется вывод, визуализация и анализ результатов для принятия решения о размещении радиоприемных комплексов и соблюдения условий их применения. При этом производится структурирование географической района на зоны возможного применения конкретных радиоприемных комплексов из рассматриваемой номенклатуры для решения поставленных задач.

Предлагаемая методика вписывается в современную концепцию управления войсками следующим образом. Существует большая трудоемкость решения задач управления в условиях крайнего дефицита времени, отводимого на планирование операций (боевых действий) при дефиците численности личного состава органов управления, резко обостряет глобальную проблему полноты и своевременности обработки информации. С целью перехода на новый качественный уровень необходимо совместное использование современного инструментария (ГИС, ГЛОНАСС, ЦКМ и других) в автоматизированных системах военного назначения. Значительное количество боевых и нормативно-технических документов соответствует концепции ведения боевых действий 70-х - 80-х годов. При этом большинство задач управления войсками требуют для своего решения информацию о местности, подготовка и обработка которой в настоящее время в большей степени выполняется традиционным способом, т.е. вручную. Автоматизация процессов управления за счет новых информационных технологий и их использование на системном уровне войсками требует разработки и применения специальных технологий оценки обстановки в районах особого предназначения на подготовительном этапе, т.е. в мирное время. Поэтому необходимость решения задачи предварительной оценки географического района для размещения радиоприемных комплексов с учетом тактических свойств местности существует, так как является одной из важнейших при организации специальных операций и будет основным ограничением для выполнения непосредственной задачи оптимизации размещения радиоприемных комплексов в заданном районе . В данном способе учитывается:

Концепция интегрирования геоинформационных систем и новых информационных технологий;

Оперативно-тактические условия функционирования и тактико-технические характеристики радиоприемных комплексов, предназначенного для размещения в данном районе;

Тактические свойства местности в сочетании с сезонными климатическими условиями;

Экономия аппаратных ресурсов для значительного объема входной информации при использовании малогабаритных, объектно-ориентированных мобильных компьютерных средств.

Таким образом, предлагаемый способ оценки местности заключается в выполнении новых операций и новой последовательности их выполнения и обладает рядом существенных преимуществ, которые позволяют минимизировать и структурировать предполагаемый район размещения радиоприемных комплексов, сократить время принятия решения на развертывание средств в позиционных районах, обеспечить высокую степень использования информационных технологий, понизить субъективный фактор принятия решения должностными лицами, повысить эффективность применения радиоприемных комплексов, а использование геоинформационной системы позволяет достоверно, с точностью и полнотой, отображать современное состояние местности, ее типичные черты и характерные особенности в настоящее время.

Таким образом, заявляемое техническое решение соответствует критерию изобретения «новизна».

Анализ известных технических решений в исследуемой и смежных областях позволяет сделать вывод о том, что введенные операции частично известны. Однако введение их в способ оценки района размещения радиоприемных комплексов с учетом тактических свойств местности с использованием ЦКМ и специализированого программно-аппаратного комплекса «Геоинформационные системы» в указанной последовательности придает этому способу новые свойства.

Таким образом, техническое решение соответствует критерию "изобретательский уровень".

Предлагаемое техническое решение может быть использовано в автоматизированной системе управления войсками при управлении частями и подразделениями при решении оптимизационных задач, для которых на предварительном этапе требуется минимизация исходной информации.

Источники информации

1. Бэлман Р. Динамическое программирование. - Издательство иностранной литературы. - 1960, 400 с.

2. Гитис В. Основы пространственно- временного прогнозирования в геоинформатике. - М.: ФИЗМАТЛИТ, 2004. - 256 с.

3. «Обзор отечественных ГИС военного назначения, февраль 2014», [Электронный ресурс] - Режим доступа: - www.gistechnik.ru

4. Брайсон А. Прикладная теория оптимального управления: Оптимизация, оценка и управление. - М.: Мир. - 1972. - 544 с.

5. Рейклейтис Г. Оптимизация в технике. - М.: Мир. - 1986 - 347 с.

6. Тикунов В. Моделирование в картографии. - Издательство МГУ. - 1997 - 400 с.

Способ оценки местности для размещения радиоприемных средств, включающий введение начальных условий и данных по заданному географическому району, загрузку цифровой карты местности (ЦКМ), проведение расчета географических зон по различным частным критериям, формирование информации о зонах возможного размещения радиоприемных средств по их тактико-техническим характеристикам, уточнение географической зоны на ЦКМ, отличающийся тем, что первоначальную оценку местности проводят по физико-географическим условиям, зафиксированным на ЦКМ, осуществляют исключение зон, непригодных для размещения радиоприемных комплексов по эксплуатационно-техническим возможностям, присущим размещаемым радиоприемным средствам при выполнении задач управления, проводят оптимизацию ЦКМ с помощью методов динамического программирования по частным и обобщенному критериям района возможного размещения радиоприемных комплексов на местности с последующей оценкой возможности радиоприемных комплексов, размещаемых в данной географической зоне.

Похожие патенты:

Изобретение относится к беспроводной связи. Техническим результатом является повышение эффективности обработки сигналов при разнесенном приеме и мультиплексирование управляющих сигналов на множество уровней MIMO на основании типа, требований и характера управляющей информации.

Настоящее изобретение относится к области транспортной связи. Технический результат - упрощение инфраструктуры, архитектуры и коммуникационных связей транспортной коммуникационной системы с возможностью выбора режима работы дорожных приемо-передающих устройств.

Изобретение относится к беспроводной связи. Техническим результатом является использование улучшенных технологий для администрирования передачей информации в канале управления восходящего канала передачи данных в системах, в которых используется объединение несущих и/или TDD.

Изобретение относится к беспроводной связи. Технический результат заключается в улучшении использования кандидатов в EPDCCH.

Изобретение относится к технологиям связи, в частности к способу, устройству и системе для обработки данных в ходе прослушивания в состоянии бездействия. Способ включает в себя дискретизацию, в режиме прослушивания в состоянии бездействия, первого аналогового сигнала посредством использования N-битового ADC и дискретизацию, в режиме приемо-передачи, второго аналогового сигнала посредством использования M-битового ADC, где N и M являются целыми числами, и N меньше M.

Предложена группа изобретений в отношении способа оптимального размещения горизонтальных скважин и программного носителя информации, способствующих максимальному покрытию горизонтальными скважинами предварительно заданной области с нерегулярными границами.

Способ проектирования многорежимной интеллектуальной системы управления распределенной средой мягких вычислений

Группа изобретений относится к медицинской технике, а именно к средствам передачи партографической информации и ее анализа. Система содержит клиентское устройство, выполненное с возможностью принимать партографическую информацию пациента в качестве входных данных, причем партографическая информация передается на сервер обработки партографической информации через коммуникационную сеть.

Изобретение относится к компьютерным системам предоставления информации. Техническим результатом является сокращение выборки определенных слов из больших массивов данных, что обеспечивает пользователю возможность ускоренной навигации по определениям слова.

Группа изобретений относится к позиционированию площадок - платформ под буровую установку для разработки месторождения горизонтальными скважинами с учетом предопределенных границ и наземных и/или подземных препятствий. Технический результат - повышение степени оптимизации позиционирования упомянутых площадок - объектов. По способу осуществляют следующее: а) определяют максимальное количество рядов объектов на основании интервала между рядами и максимального расстояния между ними; б) определяют максимальное количество столбцов на основании интервала между столбцами и максимального расстояния между объектами; с) определяют местоположение исходной точки - объекта в пределах заранее заданной границы в начальной позиции каждого ряда и в начальной позиции каждого столбца, при этом местоположение каждой исходной точки присваивают группе местоположений исходной точки; d) вычисляют суммарное значение для группы местоположений исходной точки - объекта с использованием компьютерного процессора; е) корректируют начальную позицию в каждом ряду на величину приращения для ряда и начальной позиции в каждом столбце на величину приращения для столбца. Повторяют шаги с)-е) для заранее заданного количества начальных позиций в каждом ряду и заранее заданного количества начальных позиций в каждом столбце и позиционируют площадки под буровую установку в каждом местоположении на основании местоположения соответствующей исходной точки в группе местоположений исходной точки, имеющей наилучшее суммарное значение. 2 н. и 18 з.п. ф-лы, 9 ил.

Изобретение относится к области систем управления и может быть использовано для быстрой оценки и минимизации информации о географическом районе размещения мобильных малогабаритных радиоприемных комплексов. Достигаемый технический результат - снижение времени на определение районов размещения на местности для разнотипных технических средств радиоприемного комплекса. Способ оценки местности для размещения радиоприемных средств включает введение начальных условий и данных по заданному географическому району, загрузку цифровой карты местности, первоначальную оценку местности по физико-географическим условиям, зафиксированным на ЦКМ, исключение зон, непригодных для размещения радиоприемных комплексов по возможностям, присущим размещаемым радиоприемным средствам при выполнении задач управления, оптимизацию ЦКМ по частным и обобщенному критериям. 1 ил.